
Designing a User-Experience-First, Privacy-Respectful,
high-security mutual-multifactor authentication solution

Chris Drake
CryptoPhoto

Suite 2, 3, 4; 1 Eugarie St;
 Noosa Heads, QLD 4567

Chris.Drake@CryptoPhoto.com.

Dr. Praveen Gauravaram
Tata Consultancy Services Limited

22/69 Ann street, Brisbane
Queensland, Australia

p.gauravaram@tcs.com

ABSTRACT
The rush for improved security, particularly in banking, presents a
frightening erosion of privacy. As fraud and theft rise, anti-fraud
techniques subject user privacy, identity, and activity to ever-
increasing risks. Techniques like behavioral analytics, biometric
data exchange, persistent device identifiers, GPS/geo-fencing,
knowledge-based authentication, on-line user activity tracking,
social mapping and browser fingerprinting secretly share, profile,
and feed sensitive user data into backend anti-fraud systems. This
is usually invisible, and usually without user consent or
awareness. It is also, unfortunately, necessary, partly because
contemporary authentication is increasingly ineffective against
modern attacks, but mostly because the idea of "usable" is
confused with "invisible" most of the time. In the mind of a
CISO, "stronger authentication" means a slower, less convenient,
and more complicated experience for the user. Security and
privacy tend to lose most battles against usability, particularly
when friction impacts customer adoption or increases support
costs.

This paper presents an innovative mutual authentication solution
showing that it is possible to improve both security and user
experience at the same time. The striking feature of our solution is
that the human is inherently involved during the entire
authentication and verification process. By making authentication
broadly effective for ordinary users, our solution improves user
privacy by obsoleting the need for invasive anti-fraud. We outline
further improvements to user privacy made possible through
adoption of our authentication methods within identity
management solutions.

Our mutual authentication solution contributes a range of novel
techniques addressing traditionally “out of scope” topics,
including (but not limited to) unmotivated and unsophisticated
users, social-engineering against both users and staff, phishing,
malware, server-side break-ins, MitM, DoS, bots, enrollment over
compromised channels, certificate-substitution (good and bad),
strong binding of identity to authentication, and improvements to
the speed and ease of enrollment, setup and use.

We informally discuss some private reviews our proof-of-concept
implementation received from defense and industry experts.

1. INTRODUCTION
Passwords have a great many problems, not least being 63% of
confirmed data breaches involve weak, default or stolen ones[10].
Augmenting passwords with 2-Factor-Authentication (2FA) is a
solution banks & other industries use or consider. Unfortunately,
existing 2FA techniques suffer very poor usability[6]. A popular
method to avoid usability degradation is to simply not use 2FA as
often as practical. To mitigate this risk of only occasionally using
2FA, invisible antifraud techniques or hidden multifactor metrics
are often used[1]. These include: recording and monitoring
user geo-location for risky places or unexpected changes; device
finger-printing to monitor for unexpected use of different user
machines; and persistent user tracking to record other websites1 a
visitor browses and activities they engage in to classify their
reputation as “good” or “bad”. Contemporary improvements in
authentication security and usability have come at great expense
to user privacy.

Considering the importance on protecting users’ privacy placed by
regulatory authorities such as General Data Protection Regulation
(Regulation (EU) 2016/679) with the primary objective of giving
citizens back control of their personal data, it is essential to design
security systems that are privacy preserving.

From a security perspective, 2FA technologies (including tokens,
apps, biometrics, certificates, USB/smartcard gadgets, other OTP,
and SMS) suffer many weaknesses and are often breached. The
operation of some also puts user privacy (and sometimes safety) at
risk. Many workarounds addressing some 2FA shortcomings pose
additional privacy and safety risks as well. Refer appendix A and
Table 2 for our detailed discussion of usability problems, security
issues, and privacy risks associated with current 2FA.

Our research shows that cyber-attacks on authentication systems
through phishing, social-engineering, and similar trickery succeed
due to insufficient human involvement in the mechanism.
Authentication should ensure that ordinary users (including
unmotivated, unsophisticated, careless, and/or inattentive ones)
can recognize the legitimacy of sites they log into, in a way they
cannot ignore. The key concept is “recognize”, thus the following
idea was born:-

What if a user’s eyes, brain, and hands were incorporated into the
authentication protocol itself?

The subject of this paper is essentially an answer to this question.
We present a fast, easy, complete, high-assurance authentication

1 Cross-website activity tracking is made possible through 3rd
party antifraud vendor insight among their many clients, and
popular analytics platforms being present across many sites[1].

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee.

Symposium on Usable Privacy and Security (SOUPS) 2017, July 12 --
14, 2017, Santa Clara, California.

1

Figure 1. screen pinpad

Figure 2. KBA leakage

and verification solution mutually protecting both ends of
interactions against a comprehensive range of modern attacks,
throughout the entirety of the authentication “lifecycle” (i.e.
provider deployment, user enrolment, use, maintenance, etc, plus
side-channels and exceptions).

Our ImageOTP solution demonstrates that user-provider mutual
authentication as well as provider-user mutual verification is
essential for broadly securing authentication solutions against
attack. The match-the-image-and-tap feature of our authentication
solution also significantly improves 2FA login usability, making it
faster than contemporary 2FA solutions, as well as faster than
passwords, which themselves can be safely retired now.

The rest of the paper is organized as follows: In Section 2 and
Appendix A we present details on the problems and issues with
current 2FA solutions compared with our ImageOTP. In section
3, we present an overview of ideas that led to the development of
our mutual-authentication solution. In Section 4 we cover the
security aspects incorporated into our design to address a broad
range of threats (e.g. those covered in Appendix A). In Section 5,
we present outcomes of the dialogue and meetings we have had
with end user companies and government agencies to whom we
presented our solution. In Section 6, we discuss the importance of
Usability and applicability of the solution to identity services.
Finally, we conclude the paper in Section 7 with future work.

2. Problems/Issues with current 2FA tech
Most 2FA has many shortcomings, summarized in table 2. It is
important to keep all these in mind when designing or evaluating
improved authentication. We urge you peruse Appendix A at this
point, to appreciate the breadth of the 2FA problem we address.

2.1 Problems and Issues with non-2FA tech
2FA is not the only method used to bolster login security:

2.1.1 TLS Encryption.
TLS does nothing: One 2007 study found that no users
whatsoever noticed when TLS was removed[9].

2.1.2 HSTS and HPKP.
Because users fail to notice TLS downgrades, RFC 6797
introduced HTTP Strict Transport Security (HSTS) in 2012, and
RFC 7469 introduced HTTP Public Key Pinning (HPKP) in 2015,
both designed to prevent TLS downgrade. Both standards require
websites to make changes so browsers can prevent MitM.

We tested HSTS availability among internet banking and finance
websites in May 2015 & March 2017. We found 19,006 sites from
worldwide research[1] and scripted HTTPS “get” to measure
HSTS headers. We found adoption is lacking, but growing.

Table 1. MitM mitigation via HSTS in online banking.

 2015 2017

HSTS 286 (1.5%) 1042 (5.4%)

HPKP 0 16 (0.08%)

We additionally tested the 64069 most visited websites according
to Alexa in March 2017, and found 6671 (10.4%) supported
HSTS; which is almost double that of online banks (5.4%).

2.1.3 Password protection widgets (moving on-
screen keyboards)
Keyloggers (malware which steals
user keystrokes to get passwords)
were considered a major threat in
the 1990’s and as a result,
numerous banks implemented
assorted schemes to prevent user
password theft by these tools. In
general, these consist of showing
an on-screen keypad to the user,
who then uses their mouse (rather
than keyboard) to enter their
password. To further prevent
mouse-loggers as well, some
schemes randomize the location of the on-screen keypad digits, or
randomly move the on-screen keypad after each character.

These revel your secret PIN/password to anyone observing your
login, offer a frustrating experience to users, are not compatible
with password-managers forcing users to memorize their secrets
(a problem which itself does not scale), plus keyloggers and
malware rapidly adapted, making these methods infective.

2.1.4 Knowledge-Based authentication (KBA).
Some websites challenge users for extra data, or when anti-fraud
or transaction security decides step-up authentication is necessary.

Methods include:-
Secret questions and answers, confirming known personal details
like birthdays, credit card or phone numbers, postal or email
addresses, recent transaction history, and sometimes (especially in
banking enrollment) official identity information like licenses,
passwords, birthplace records etc. “Memorable Letter” mitigation
is sometimes used, requiring users to enter only a few assorted
parts of their data; at significant mental effort.

In some cases, parts of
users KBA data are
leaked to unauthorized
users, facilitating
attacks against either
the site in question, or
against some other site
(i.e. information
leaked through
recovery mechanisms can facilitate break-ins elsewhere).

Ironically, these methods are typically used when a password is
considered insufficient or compromised, yet these methods
perform KBA over the same channel. They offer weak additional
assurance, and store significant privacy-invasive user data in
online databases, putting users at risk online and in real life.

KBA can be frustrating and difficult for users, especially those
who’s circumstances change often, or who authenticate only
occasionally, or who have no answers available for preset secret
questions (e.g. a child has no first car, first love, etc).

2.1.5 Site Authentication Images.
Some sites ask users to choose a “memorable image” and instruct
them to discontinue login if that image is wrong or missing. One
2007 study found this 92% infective[9]. This technique has since
been discontinued by many of the larger banks who once used it.

2

Table 2. 2FA security+ .
usability comparison.

Refer Appendix A

3

Refer Appendix A

2.2 Problems caused by poor authentication.

4

2.2.1 CAPTCHA
To mitigate 2FA threats, a frequent but near-universally hated
technique preventing robots and automated account dictionary
attacks is often used. These scrambled-letters or picture-puzzles
severely impact usability, and are often ineffective[2].

2.2.2 Know Your Customer (KYC) artifacts
KYC laws require important identity information & documents to
be uploaded, typically including social identity numbers, licenses,
passports, voting, address, tax, and other registrations. Websites
usually exercise care with the storage of this information, but they
typically exercise a lot less care with their collection security
(refer table 1). Most websites do nothing about user security, other
than bury antivirus suggestions in their terms.

Break-ins and malware on PCs and website hacking subject users
to identity theft risks. Scanned/photographed documents, if not
erased after upload from users’ devices, backups, and cloud
storage, remain, sometimes perpetually, at risk of future theft. The
failure of 2FA has caused there to be no unified identity
management solution, which would have overcome these risks.

2.2.3 Excessive attribute release
Using personal information to mitigate authentication
ineffectiveness puts that information at great risk.

2.2.1 Unauthorized access and destruction
Ineffective authentication causes 63% of confirmed data
breaches[10]; significant good can come from solving this.

3. BACKGROUND
We devised a TAN solution using an assortment of random
images printed on it, each having an associated OTP code.
During authentication, a user is presented with one randomly
selected image on-screen (see fig.4) which differs each login.
User then enters the corresponding OTP code from their TAN.
This prevents them logging in to wrong websites, since no
matching image will show, and it’s also impossible for users to
ignore the image. Humans are adept at quickly finding like-
looking matches. This is also the first method of mutual-
authentication between a website and a human that we know of;
mutual-authentication is usually between two machines.

Figure 3. Image TAN

Figure 4. Image login widget

This TAN suffers some drawbacks, such as those described in

appendix A-1.10 (however, we do introduce clientside mitigations
for many), and it’s not exactly an improvement in usability.

To address our TAN usability shortcomings, we then devised a
Mobile-App solution based on our matching-image technique.

Figure 5. PC-Mode Image-
Matching Mobile App

Figure 6. Mobile-Mode (in-
device) Image-Matching App

Users “tap” the matching image on their app (figs. 5 or 6) rather
than read and type OTP codes. Together with websockets and
mobile PUSH, this reduces authentication to one single tap.

To address remaining security shortcomings not already solved by
introducing the App, we devised an independent-authentication-
appliance architecture (fig.7), with strict “separation of duties”;
identity is managed exclusively by the host website, and
authentication by the appliance, neither of which have access to
the others’ information. This architecture additionally improves
privacy by not storing any user identity information in either the
App or appliance.

Figure 7. Solution architecture; User “C” (e.g. a banking
customer) authenticates to website “B” (e.g. a Bank) with help
of appliance “A” supported by cloud services “D”.

This Image-OTP solution is robust enough to safely discontinue
the use of passwords, since they add little security benefit.

A typical login experience for a user who does not clear their
browser cookies (86% of users [4]) is as follows (this flow is
identical on PC and mobile, including the mobile with the App):

5

1. User loads website, which shows them a random image (refer
figure 4 for PC, or top half of figure 6 for mobile.)

2. Users’ mobile device auto-displays some random images, and
the user taps the matching one to authenticate (refer figure 5
for PC or lower half of figure 6 for mobile.)

A complete login (identification via cookie, plus Image-OTP
authentication) takes one tap (plus, if necessary, a phone unlock),
and takes around 5 seconds. Username/password are not required.

Users who need to identify (the 14% who clear cookies) do this:

1. User loads website and enters their login username (if they see
a random image, as would be the case if their cookie existed
but they wanted to use an alternate identity, they ignore the
image and enter (or choose) their alternate identity at this step)

2. Users’ mobile device auto-displays some random images, and
the user taps the matching one to authenticate.

Websites uncomfortable omitting passwords put them in step 1.

Our method improves login usability, reducing it to one (usually),
fast and fun, match-the-image-and-tap action. It is usually faster
than passwords, and always faster than contemporary 2FA.

Enrollment and setup for all users involves directing to their app-
store for the app, & pairing the app with their account. On mobile,
we take them directly to app installation. For others, we provide a
selection of methods to quickly obtain the correct app on their
mobile (including scanable QR code, email or SMS with a
clickable URL, or letting them manually type-in a shortened
URL). In all cases, our enrollment mechanism prepares to allow
the App, once installed, to understand which user account
requested it, then it automatically provisions and pairs a token
with images to the users account. Initial enrollment is 12 steps
and takes 2 minutes on average. A second enrollment (by a user
who already has the app) is one step and takes under 10 seconds.
By contrast, two of the most common Mobile-OTP apps on the
market each take 56 steps to complete a successful initial
enrollment, and take more than 20 minutes from start-to-end.

4. SOLUTION DESIGN AND
CONSTRUCTION
Our design blocks or neutralizes almost all the vulnerabilities
outlined in appendix A, and overcomes almost all drawbacks.
More importantly, typical use takes just one tap, requires
practically no mental or other user effort, and takes mere seconds.

4.1 Mobile App design and construction
To facilitate rapid in-the-field app updates and increase code
reusability, we designed as much as practical in responsive HTML
and JavaScript (JS), and wrote four minimally supportive native
outer- containers to host the HTML control (one each for iOS,
Android, WindowsPhone, and Blackberry). The native component
also provides PUSH, sensor and device-biometrics access, user-
notifications, protected-storage facilities, QR scanning, and where
necessary for the platform and version, cryptography. The HTML
components do all display, and JS performs almost all processing.
All supporting HTML and JS is digitally signed, and the native
components verify signatures. Apps check for and download
HTML+JS updates at open, periodically, and if requested via
PUSH. Updates themselves are signed, and applied immediately.
Data is exchanged and stored in encrypted JSON packages.

The soft-token structure containing the assortment of images is

stored in JSON in device protected storage – an operating-system
protected area which is not backed-up to user cloud or PC devices.
Tokens are created & supplied to the App during user enrollment
by the authentication security Appliance (see section 4.2). Our
TAN cards (aka “Hard Tokens” – see section 4.3) are minted the
same way, being printed from JSON rather than used in an App.

The Token JSON contains: (1) A random 12-digit TokenID
expressed in numbers, EAN13 barcode, and QR. They carry no
metadata. These have assorted uses, one is to help users
distinguish between possible multiple tokens they might own for
the same website. The barcode and QR are scannable by the App
to facilitate rapid enrollment. The QR embeds an auto-discovery
URL along with the TokenID, thus it works correctly even when
scanned by a wrong reader. (2) A small subset of random
photographic images, selected from a licensed set of 11,000 and
manually inspected to remove all possibly controversial and
ambiguous ones; the selection algorithm additionally rejects
similar-looking images when assembling tokens. All images are
watermarked, subtly mangled (digitally distorted to hamper
simplistic machine matching), and digitally signed with EXIF
tracking inserted to detect possible future misuse. (3) A random
64bit OTP code for each image. OTP codes are not stored on
Appliances; we use “6+ cost” (cost being chosen based on
appliance CPU power and expected peak login load) multi-round
double-salted (64bit per-token salt plus 64bit per appliance salt =
128 TRNG bits) bcrypt versions with naming-deceptions to
mitigate server-side break-in vulnerabilities. (4) Manual per-
image typeable random alphanumeric OTP codes which are case
intensive, but printed in differing case to eliminate ambiguity. We
use base-35, since we accept ambiguous zero and letter “o”
equivalently. OTP codes vary in length; they are used in the App
in situations where no data connection is available and a users’
only option is to manually type in a code. They are hidden from
users when unnecessary (i.e. almost all the time), and screened
during minting to avoid offensive words. These are stored as
images (not text) with the same protection as the photographic
images, to hamper potential in-device malware extraction.
(5) Issuing metadata for auditing (versions, date, mint options,
revocation provision). (6) A per-token 64bit random shared secret
salt. (7) Branding logo and name of the website. (8) Hash of
providers’ customer identifier, which is itself hashed to enforce
separation-of-duties. (9) Appliance endpoint URL. (10) QR-code
resolution URL. (11) 2048 bit RSA keypair generated natively in-
app during token installation (public key is uploaded to appliance)
after generation. Images and associated OTP keys can be
automatically replaced after use.

Token JSON is encrypted to a per-device static key, which is
optionally combined with a users’ per-token password and/or
biometric. This prevents stolen JSON being decrypted without the
device, and prevents (e.g.) friends and family from making use of
tokens in the App. This latter protection adds an extra step to the
login process: the user supplies their fingerprint or password to
unlock their token before they can tap a matching image.

Mobile-malware risks required our app design to incorporate
defensive techniques: we used a commercial anti-tamper wrapper
to fortify our app object code, and a server-initiated integrity self-
check whereby the app sends a digest of server-specified
(randomized) areas of app runtime; any mismatch detected at the
server will indicate a tampered-with app or runtime environment.

We built our native components maintaining backwards

6

compatibility with the widest practical range of legacy devices to
afford protection to the largest numbers of users. Our apps support
iPhone 3 and most older iOS, and almost all Android devices, plus
old BlackBerry and WindowsPhone too.

4.2 Appliance
We chose CentOS 6 with SELinux for our appliance operating
system, and commissioned a professional security-hardening and
custom “two-man rule” policy; the “root” user has no permission
to exercise their normal super-user rights unless granted that
permission by an oversight operator, who themselves has no other
permission but to grant “root” when required. We wrote an
installer which makes use of “dd” and a custom net-install grub
image to erase any existing operating system it finds itself on, and
do an unattended fresh-install of a clean new O/S from verified
media; this we felt was necessary for all cloud environments since
it’s impossible to know what might have been done to your O/S
before you’re given control. Linux auto-generates many keys
during installation based on DPRNG (deterministic pseudo-
random-number generators), and since most clouds provision
from “clones”, it’s never clear how secure these might be. Our
solution is incompatible with OpenVZ style containers, but this
could be considered an advantage since those do not enjoy great
separation from their host. We enforce LUKS encryption, with a
modified netinstall bootloader capable of requesting the
decryption key (using another appliance to notify the operator to
approve the (re)boot). This provides reasonable protection against
host-launched attacks and permits headless reboots while not
leaving keys vulnerable to invisible theft. Our installer loads
TRNG (True-Random-Number) hardware drivers in advance of
key generation to ensure quality entropy is used for them (we used
vmware on servers with USB TRNG devices). We “patched out”
the “seed” functions in several underlying cryptographic libraries
to prevent possibility of non-random number requests, and we
modified the actual random number routines themselves adding an
additional XOR step to mangle the routine-chosen random with
random we draw direct from the TRNG hardware (this was done
because the existing random routines have suspiciously complex
code and we could not determine if this was for safety or
backdoor purposes. Since one vendor of DPRNG algorithms was
found to have taken payment to backdoor their code, we feel an
abundance of caution here was justified). We configured TLS to
achieve an SSLlabs A+ rating, disabled all plaintext and/or
insecure protocols, activated HSTS, HPKP, Fallback Signaling
Cipher Suite Value (SCSV – which prevents protocol downgrade
attacks), Online Certificate Status Protocol (OCSP stapling – for
revocation), and perfect-forward-secrecy. We fortified SSH with
our PAM second-factor protection (to an unrelated appliance of
course) – our appliances thus protect one another.

Our stateless auto-sync allows redundant appliances to add DDoS
resilience, improve geographic speed (reduce latency), and
increase load capability. Any appliance in a related constellation
can service any user at any time. We chose physical servers with
redundant BIOS, memory, power, storage, and networking, and
located them in locked cages in datacenters with no-unescorted
access, and 24/7 NOC; one in San Jose, USA to give low latency
to USA users, and a peer in Cork, Ireland, chosen after an
extensive search for a provider who would guarantee not to “take
down” our appliance in the (unlikely) event of receiving a USA
court order. We negotiated different utility providers for each of
the 2 power supplies in USA, and different network providers for
each of the two network connections in both. We felt it was

necessary to protect not just physical appliance security, but also
legal, regulatory, environmental, and logical security as well.

We rented one Amazon and one Azure cloud server to host a
sample banking website and government tax website to
demonstrate our solution live.

To add our protection, a website deploys and configures an
appliance (or uses public ones), then takes the following steps;

1. One “blank” page is provisioned, and one menu option is added
to their site navigation: the page is used to display the
enrollment and token self-service maintenance subsystem
which is drawn by the website from the appliance machine and
shown to the user, & the menu option is used to reach this page.

2. The website modifies its login procedure; at user-identification
stage, an API call is made to the Appliance to determine if
protection is already set up: if yes, the appliance responds with
the image-display widget (figure 4 and section 4.5.1) which the
website send to the user’s web browser. If not; the appliance
responds with an enrollment wizard which is also sent by the
website to the user’s browser, and which guides the user
through the process of getting the app with a token.

3. Any transactions the website deems needs protection against
malware are also modified (e.g. financial transfers, cloud-server
erasures, password/address changes, etc); the website adjusts its
processing to send a suitably formatted representation of the
proposed transaction to the user, who inspects this and when
happy confirms it (digitally signs with their in-app private key).
Prior to processing, the website checks the signature matches
the supplied form fields and the user approved (did not deny) it.

4.3 TAN Cards
We retain the physical TAN card idea, but these hard tokens are
given the new name “Recovery Token”. They become part of the
binding identity-to-authentication step in physical user
provisioning (e.g. in-bank-branch account opening) for customers
who did not bring their phone with them, or they can be mailed
out, or printed at home by users. Users are instructed to safeguard
these tokens, which will be used in future to recover access to
their account in the event their phone can’t be used (e.g. lost,
stolen, flat, etc). They can also be used to support users who
don’t have, or don’t want to use, or aren’t allowed (e.g. military
personnel on service) a mobile device for authentication.

4.4 Optional Anti-MitM Agent
Preventing man-in-the-middle attacks, including blocking
unwanted TLS proxies and other certificate substitution
mechanisms, while permitting wanted ones, is accomplished as
per below. Since this step is considered impractical because it
requires users to have installed an active-channel-binding agent on
their web browser, we mark it as optional. Since transaction-
verification already mitigates MitM attacks, the only benefit
found from blocking them it to protect user’s privacy (as opposed
to the money in the bank account). It is hoped that our planned
future standard will be incorporated into O/S and browser vendor
products permitting all those with need to secure against MitM
threats a safe, privacy-preserving mechanism to do so.

The challenge to solve was how to prevent something “in the
middle” from simply relaying what they see on their screen to a
victim, in order to facilitate an attack (including initial enrollment
as well as authentication and transaction entry/signing), and how
to prevent this without invading user privacy or subjecting users

7

to risk of future unwanted tracking or other side effects.

We modified our TLS server to provide our application code with
a digest of the TLS symmetric session key (master secret), which
thus offers us means for our client agent installed in a user web
browser to detect an intermediary (the TLS session key is securely
derived; neither end can force the other to generate the entirety of
a key they might want; more specifically, no intermediary can
force both its peers to use a matching key). We use a digest, not
the key itself, so as not to weaken the encryption. The agent
contains a compressed library of 11,000 optimized image file
thumbnails. During authentication, our TLS server determines the
index for the image thumbnail the client needs to show, and
encrypts this index using a combination of the session key digest
and agent-key (a random per-user per-site key derived at
enrollment), and sends this to the agent. The agent decrypts this
index, and displays the image thumbnail locally to the user (in this
protocol, no images travel over the network). In the event of a
session key mismatch, or the event of an incorrect or unexpected
agent (e.g. an attacking intermediary’s agent), the resulting wrong
decrypted index will cause display of a wrong image, thus
preventing a user from login because it will not match one they
can tap (i.e. there is a 11,000:1 chance against the mismatch
displaying the correct image).

In the event of a wanted intermediary (DPI firewall), the agent
detects the certificate mismatch and displays a suitable warning
and acceptance option to the user, which if chosen, re-computes
the index using both TLS session keys (the user-side connection
and the server-side one), which facilitates the correct image
display. TLS-Proxy support is possible to prevent additional
unwanted MitM attacks, and additionally allow wanted inspection
(i.e 2 or more MitMs at once).

Secure enrollment over a possibly compromised channel is
possible. The challenge to solve was how to prevent an
intermediary from tricking a user such that the intermediary can
enroll themselves, or more specifically, how do we ensure that the
agent in use is the real users agent, and not the MitM one.

We solve this by using our App. At enrollment, the agent
generates a key to be later used in combination with the TLS
session key hash to enforce channel integrity, and it also sends to
the website a signed copy of the TLS certificate it observed. The
agent generates one real key, and several decoys, and displays
them locally (refer figure 8), using a method unavailable to a web
browser (writes the keys on
the desktop and dims the
screen). Beside the real key
is the users logged in PC-
username, with fake
usernames alongside the
decoys. Instructions for how
to proceed are sent to their
App, which asks them to
minimize their browser and enter the key from their screen
corresponding to their logged-in PC username. The intermediary
is prevented because they cannot trick the real user for two
reasons: (1) the intermediary cannot display *their* agent key in
the correct manor, since the intermediary is constrained to the
user’s web browser, and (2) the intermediary cannot show the user
the users’ logged in username, since this information is not
available to a web browser. The intermediary is prevented from
“social engineering” an enrollment because the App itself guides

the user to help prevent them from attack, which is why the app
instructs the user to minimize their browser (to hide any decoy
intermediary instructions); note that in a non-attacked enrollment,
the agent will minimize the browser automatically – instructions
are necessary on the App to since an intermediary might be
preventing the agent from receiving the website instructions.

This mechanism resists both modification and suppression attacks
by intermediaries. Keys are computed such that no private
information is leaked (no website can ascertain what other sites a
user might visit, or what other identities a single user might use on
that site, and no mechanism to retrieve indelible identifiers from
user machines exists).

4.5 Protocol
Customer C (figure 9)
using their PC, Tablet,
and/or phone and
token accesses
service B (via
firewall). Appliance A
helped by cloud D
provides authentication, transaction verification, and security.

4.5.1 Authentication
Customer C loads website B and enters username (if not supplied
by cookie) and optional password. Server B makes API call to
appliance A to determine if customer is enrolled. If not, B logs
customer in. If yes, appliance A returns challenge widget to B
which it displays on customer’s C’s browser, and A additionally
triggers a PUSH through cloud D to auto-open C’s token for them.
Customer C uses token to solve the challenge by taping the image
on their phone which matches the one displayed by the widget.
This tap triggers C’s mobile device to securely communicate a
signed (by C’s token’s private key) and encrypted (to A’s public
key) OTP response to A, which (if correct) signals C’s browser to
auto-proceed (for convenience, not security). Encryption and
signing exist to defeat malicious TLS (cert substitution) MitM.
B checks again the customer’s OTP is correct, and logs them in.
A is isolated from (has no knowledge of) C’s identity.

When customer C has no mobile device, they submit the OTP
manually into their browser from their physical token to login.

Our widget sends the image via in-device URI, switching context
to the App and back, for users browsing on their mobiles (fig.6).

Our widget includes self-protecting malicious bot detection, for
detecting scripted MitM attacks trying to steal images.

4.5.2 Transaction Verification (inline)
Customer C submits some intended action (e.g. a money transfer)
via a web form to website B. Appliance A receives the purported
intended transaction (via B or via C’s browser, depending on
implementation), prepares it for display to C’, and triggers a
PUSH through cloud D to C’s mobile device, which securely
retrieves the transaction to be displayed from A (signed by A’s
private key and encrypted to C’s public key). C verifies this
transaction shown on their phone is correct as they intended, then
taps the “approve” or “decline” option, which generates a digital
signature of their response and all transaction form elements, and
communicates this signature to A, which in turn communicates it
to B. (via C’s browser if not directly). B checks signature match
and customer approval, and processes the verified transaction. In

Figure 8. Agent binding PIN

Figure 9.Aarchitecture

8

the event of a decline by C, or mismatch at B, A additionally
triggers a D PUSH to request decline reasoning from C, which is
passed to B (for attack and customer compromise reporting).

4.5.3 Transaction Verification (out of band)
B triggers a D PUSH to C’s mobile device, which sounds an audio
alert. C unlocks their phone (if not already) which retrieves the
transaction from B and displays it C, who follows the on-screen
instructions, and taps or selects an appropriate option. C’s
response and any associated data is signed and communicated to
A which in turn sends it to B, which processes or displays it
needed. “Transactions” suiting this flow include mutual
authentication of two parties over telephone or in-person, control
of no-screen IoT devices, 2FA Pluggable-Authentication-Modules
(PAM) processing etc.

5. RESULTS AND RECEPTION
We succeeded arranging 1 hour meetings with the security teams
from the largest 4 banks in our country. All teams were
impressed with speed and ease-of-use, and only one team found
an area for concern: deliberately fraudulent customers exploiting
online banking security guarantees (which we since solved with
transaction non-repudiation). We learned that describing new
concepts to security professionals is incredibly difficult; they
often mistake our techniques with similar past marketplace
failures, and it took great effort to convey how visual mutual-
authentication works, and differs to contemporary methods. We
learned that most banks do not disclose their fraud levels, that
social-engineering and malware are their top concerns, and that
some banks use non-consensual anti-fraud biometrics collection.

We presented to corporate security teams from a large search
engine, a large software vendor, and a large social network; the
only concern raised was one team member expressing “friendly
fraud” concerns (specifically; his girlfriend using his phone),
which we since solved with password and biometric token
encryption.

We were invited (after background checks) to our nation’s capital
to meet its peak defense agency. Four experts; including one
pentester, one policy, one cryptographer and one who’s role was
classified, met us. They described themselves as the best in their
roles countrywide, and reviewed our solution in-person (they
understood immediately). We showed several live demonstrations,
then answered rapid-fire questions for an hour. The only
weakness they found was our (since fixed) handling of generated
tokens after delivery. We asked them each what they believed
was the most important part of our solution: two chose our speed,
the other two chose simplicity. Keeping in mind these are the top
security experts in our country, and none put security first, this
confirmed our belief that usability is more important than security
when it comes to real-word implementation.

5.1 Protection efficacy and user experience.
Our meetings informally confirmed that our solution improves
authentication usability (speed, ease, convenience, ubiquity, and
compatibility) for authentication, transactions, and enrollment, on
both desktop and mobile for all users, savvy and problem alike.

Security and related topics explored during our meetings included:
(1) Active and passive man-in-the-middle and spoofing attacks,
(2) key-loggers, (3) mobile and desktop malware, (4) shoulder-
surfing and other passive credential thefts, (5) social engineering
against users, staff, and 3rd parties, (6) wateringhole attacks,

(7) forgotten passwords, (8) weak/re-used passwords, (9) server-
side break-ins, (10) typosquatting, (11) clicking malicious links,
(12) opening phishing emails, (13) dictionary attacks and related
denial-of-service problems, (14) friendly fraud, (15) deliberately
fraudulent customers (non-repudiation), (16) phone loss/theft
handling, (17) password replacement (using no passwords at all),
(18) scalability, (19) infrastructure, privacy-respectful architecture
and device identifiers, (20) separation-of-duties, (21) integration
cost, effort, and methods, (22) support requirements and costs,
(23) telephone call-center customer verification modes, (24) in-
person mutual authentication, (25) revocation, (26) self-service
(including replacement/re-enrollment), (27) updates, (28) expiry,
(29) secure enrollment over compromised networks, (30) deep-
packet-inspection device tolerance, (31) TRNG usage and no
master keys/secrets, (32) entropy strength, (33) customers with
multiple devices, (34) multiple customers sharing one device,
(35) one customer with multiple personas on one or more devices
and our strong privacy isolation for this (36) implementing
multiple brands or disparate systems at once (37) users with no
mobile devices, (38) international and offline usage modes,
(39) secure storage, (40) security standards adherence & potential
LoA3 accreditation strength, (41) mobile phone number porting,
(42) risks of password-managers, (43) multi-channel transport
strength, (44) minimal training, (45) configurations options &
policies, (46) rapid/automatic logins, (47) factoring and post-
quantum resistance, (48) backups, (49) cryptographic algorithm
choices (50) agentless operating capability, (51) login-flow
positive impact & customer security perception (52) compatibility
across different machines, and (53) single-device usage mode.

6. DISCUSSION
6.1 Importance of usability
We believe usability is the most important aspect of security,
because security protects no-one if it’s not used: If it’s hard to use,
it won’t get turned on, if it’s slow, users won’t want to use it, if
it’s hard to enroll or understand, many won’t be able to use it, if
it’s inconvenient or doesn’t scale it will get resisted, if it is banned
or can’t plug in it will be impossible to use, if it’s too expensive
many won’t be able to afford it, if it won’t work offline or abroad
it will be unreliable, and it must work for everyone, everywhere,
always. It’s a good idea too, if it’s secure and broadly effective!

6.2 Applicability to Identity services
Many modern privacy concerns could be solved if a respectful,
identity framework was widespread. Uses could, for example,
digitally prove (with anonymous non-repudiation) to a bartender
they’re old enough to drink, without being forced to show ID that
displays their full birthday, name, address, registration numbers,
signature, blood type, donor status, etc. Such an identity solution
would fit well into our framework, protection, and architecture

7. CONCLUSION
Anecdotal results show exciting opportunity for our technique to
improve user experience and security.

7.1 Future work
Our work and proof-of-concept would make an ideal basis for:-
• A study on authentication efficacy and usability; to the best of

our knowledge, no broad comparison has been done on
authentication methods/products & modern attack vulnerability.

• Work on a privacy-respectful identity/attribute assertion system.

9

• Empirical study on this solutions’ efficacy and usability.

8. ACKNOWLEDGMENTS
We thank the defense and numerous industry security experts who
freely and eagerly gave up their time to review our solution and
their quest to try and find possible oversights in it.

9. REFERENCES
[1] Avast forum “List of Online banking sites in your country”

https://forum.avast.com/index.php?topic=83592.0

[2] Bursztein, Elie. Aigrain, Jonathan. Moscicki, Angelika.
Mitchell, John C. (Aug 2014) "The End is Nigh: Generic
Solving of Text-based CAPTCHAs" 8th USENIX Workshop
on Offensive Technologies
https://www.usenix.org/system/files/conference/woot14/woot
14-bursztein.pdf

[3] Castelluccia, Claude. Narayanan, Arvind. (Oct 2012)
"Privacy considerations of online behavioural tracking". The
European Network and Information Security Agency
(ENISA)

[4] Clifton, Dr. Brian (March 2010) “Understanding Web
Analytics Accuracy”; https://brianclifton.com/pro-lounge-
files/accuracy-whitepaper.pdf

[5] Dunkelman, Orr. Keller, Nathan. Shamir, Adi. "A Practical-
Time Attack on the A5/3 Cryptosystem Used in Third
Generation GSM Telephony" Faculty of Mathematics and
Computer Science, Weizmann Institute of Science

[6] Krol, Kat. Philippou, Eleni. De Cristofaro, Emiliano. Sasse
A, M. Angela (Jan 2015) “They brought in the horrible key
ring thing!” Analysing the Usability of Two-Factor
Authentication in UK Online Banking. University College
London

[7] Marques, Diogo. Muslukhov, Ildar. Guerreiro, Tiago.
Beznosov, Konstantin. Carriço, Luís. (June 2016) "Snooping
on Mobile Phones: Prevalence and Trends" Symposium on
Usable Privacy and Security (SOUPS) 2016
https://www.usenix.org/conference/soups2016/technical-
sessions/presentation/marques

[8] Panjwani, Saurabh. Prakash, Achintya. (July 2014)
"Crowdsourcing Attacks on Biometric Systems" Tenth
Symposium On Usable Privacy and Security: SOUPS’14

[9] Schechter, Stuart E. Dhamija, Rachna. Ozment, Andy.
Fischer, Ian. (May 2017) “The Emperor’s New Security
Indicators An evaluation of website authentication and the
effect of role playing on usability studies”. The 2007 IEEE
Symposium on Security and Privacy.
http://www.usablesecurity.org//emperor/emperor.pdf

[10] Verizon. “2016 Data Breach Investigations Report” (DBIR)
http://www.verizonenterprise.com/verizon-insights-
lab/dbir/2016/

10

Figure 10. OTP token

APPENDIX

A. Problems/Issues with current 2FA tech
This appendix supplements table 2 from page 3.

Most 2FA technology is based on one-time-passwords (OTP).
2FA has many shortcomings. It is important to keep all these in
mind when designing or evaluating improved authentication.

A-1 Categories and vulnerabilities of 2FA
This appendix groups the different kinds of 2FA available into ten
categories, and outlines the drawbacks and vulnerabilities of each.
To avoid repetition, subsection A-1.11 afterwards addresses
general failures that all ten 2FA categories suffer.

A-1.1 OTP hardware.
Hardware-based or keyring-style
OTP tokens are the most well-
known 2FA category. They
generate new random codes every
one minute or so based on a per-
token ID, the time, and seed or key material programmed by the
vendor. Codes are typically valid for double or more the length of
time they’re displayed (to accommodate clock skew and slow
typists). When invented2 in 1984 (8 years before the invention of
the world-wide web), time-limited OTP passcodes had better
chance of improving security because networked machines and
real-time attacks were rare.

Security vulnerabilities of hardware OTP include:-

a) Man-in-the-Middle (MitM) attacks; intermediary can steal OTP
b) No channel security; there is no association between OTP code

and a secure channel, leaving the protection of codes against
theft out-of-scope: it’s the website’s job to use TLS with HSTS
and HPKP etc, & the user’s job not get tricked or downgraded.

c) Spoofing; there is no binding of tokens to resources. Imposters
can capture codes, and have several minutes to use them.

d) Single channel transport; techniques which steal passwords like
keyloggers, phishing, malware, and social engineering of the
user equally succeed stealing OTP codes too.

e) No local protection; codes are typically displayed on a screen
which has no protection against unauthorized viewing

f) No utility for signing transactions; OTP codes bear no relation
to user activity so are inappropriate to confirm user instructions

g) No malware protection; Because OTP cannot sign transactions,
malware can inject/modify instructions, which get innocently
permitted by users unaware the OTP code is being hijacked.

h) Very low resistance to misuse by friends, family, or peers.
i) Intentional fraud: Sometimes it’s not the bad guys defrauding a

user, but bad users defrauding (for example) their bank. Fraud-
free guarantees are often abused by unscrupulous customers.

j) No non-repudiation; OTP does not prove user intent.
k) No PIN protection; most OTP tokens have no keypad.
l) Lacking mutual authentication; OTP code-use is one-way only;

2 1984 OTP Patent http://www.google.com/patents/US4720860

no mechanism to verify authenticity of the website exists.
m) Low Entropy; only short numeric codes are supported.
n) Serverside OTP support typically requires installation of

hardware and drivers, which carry their own risks of
compromise. The $1.1-trillion hack against the US Office of
Personnel Management was ironically facilitated through
privilege escalation attack against their OTP Driver software.

o) Seeds and Keys protection; OTP tokens are based on a master
secret, which when stolen, compromises all user OTP tokens at
once. This infamously occurred in 2011 when a phishing email
stole keys from an OTP vendor which were subsequently used
to facilitate military contractor organizations break-ins. Upto
40 million compromised tokens were subsequently replaced.

p) Most OTP is based on asymmetric cryptography, threatened by
quantum computing and advances in factoring techniques.

Drawbacks of OTP hardware include:

q) Multiple Usability issues: they interrupt and dramatically slow
down user authentications. They have no backlight making
them sometimes difficult to read. They are bulky and require
physical carriage. Usability is so poor; banking customers have
switched banks to avoid being forced to use OTP hardware[6].

r) They do not scale: Users require a new physical OTP token for
every website login requiring protection. At time of writing,
this Author (a long-time internet user) has 2838 unique
accounts across 2277 websites; if all were protected by OTP-
token, that would cost $100,000 in tokens, weigh 93lbs (42kg),
take half an hour to locate the correct one for each login,
prevent logins when away from the token-room, and require 56
replacement tokens each week as batteries go flat, taking 40
hours to reenroll, costing $20,000p.a. to buy the replacements.

s) They fail, expire, and go flat: OTP tokens typically last 5 years.
Some policies expire them sooner (prior to battery exhaustion)
some fail through clock sync, battery or environmental issues.

t) Prevent Fast and Automatic logins; OTPs require manual code
reading and typing. They cannot support automatic/rapid use.

u) Slow setup; OTP’s require shipping, and once received, usually
require ~ 30mins setup and enrollment procedures.

v) 3rd party trust; OTP keys are typically made at and kept with
the token vendor. Any theft of misuse of these keys allows an
OTP token to be emulated by an adversary; see (2.1 above.

w) Limited offline utility; OTP tokens are rarely used to
authenticate customers over the phone or in person.

x) Single token only; Most OTP client implementations allow for
just one user token; there is no provision for users needing
more (e.g. one token at home and a second at work).

y) No self-service; OTP are hardware devices, which require
costly deployment/handling which users cannot do themselves.

z) High costs; OTP devices themselves are expensive, the
serverside hardware and licenses are likewise expensive, and
the support costs and periodic replacements also expensive.

11

http://www.google.com/patents/US4720860

Figure 11.
OTP+TV

A-1.2 OTP with transaction-signing (OTP+TV)
Some OTP hardware includes a keypad,
useable for Transaction Verification (TV).
These are typically PIN protected and also
capable of providing plain OTP codes for
authentication. Signing consists of
entering numbers (e.g. PIN, source,
destination, and $ amount of financial
transfers) to produce a verification code
based on all the information keyed in,
which the user then types back into the
website.

Security vulnerabilities of hardware OTP+TV include:

a) When used in OTP-only mode (as opposed to TV mode), these
suffer all the same problems as plain OTP except for the ones
mitigated through the use of the PIN pad protection.

b) Rogue transactions via MitM, spoofing, and malware: In
banking context, the limited no-prompts OTP-TV display
makes it hard for users to understand the meaning of the
numbers they key in and to know and check they’re correct in
the following three different places: (1) their original
transaction they submitted (e.g. through their PC). (2) the on-
PC-screen prompts telling the what to type on their OTP+TV
keypad, and (3) the numbers they manually enter on it.
An adversary with privilege to modify user screens can
substitute the intended receiving account destination with their
own, and can adjust transaction amount almost unperceivably.
For example: to transfer $100, a user keys in 00010000. If
malware told them 00100000 instead, it’s unlikely they’d
notice. Similarly, recipient partial-account numbers might be
subtly or completely adjusted, and/or the bank to which the
payment is intended, not being part of the signature at all, is
free to be modified by the attacker.

c) Partial signatures only: no facility exists to sign the actual
submitted transaction (which would include recipient names,
routing numbers, banks, dates, other instructions, and notes);
signatures are limited only to the least-significant digits of
recipient account identifiers; the rest is at risk to malware.

Drawbacks of OTP+TV hardware include:

d) These tokens also suffer all the drawbacks of OTP tokens
discussed in section A-1.1.

e) Usability; entering every transaction twice on the small and
low-quality keypad becomes a major chore for users. Many
users, including this author, dread using these exhausting
devices so fiercely, that avoiding transactions as much as
possible becomes common practice.

A-1.3 Mobile App OTP
Some mobile apps replicate OTP
hardware, thus they suffer most of
the vulnerabilities and drawbacks
discussed in section A-1.1 in
addition to more discussed here.

Security vulnerabilities include:

a) Cloning; Mobile-OTP keys
live usually without protection
on the user’s mobile device.

b) No Key encryption; most
Mobile-OTP does not have
PIN or passwords protecting
OTP codes. While phones
themselves are usually locked, 31% of us still suffer a “snoop
attack” against our phones every year anyhow[6].

c) Enrollment attacks; Enrolling a Mobile-OTP requires sending
the key material to the device; this is usually done via QR code
or typeable text string. Intercepting these codes allow
adversaries to generate future OTP codes at will.

d) Serverside break-in; The webserver must store the per-user
OTP key in their database; this is usually kept in the same table
that usernames and passwords are in. Any webserver flaw
resulting in a password breach will also result in the loss of all
OTP keys as well. Such break-ins and thefts are common.

e) Mobile malware; In-device malware might have access to steal
user keys. On “rooted” or “jailbroken” devices, and unpatched
/older devices with escalation flaws, nothing protects the keys.

f) Cloud backup; Most mobile devices backup their storage to
cloud servers, putting OTP keys at risk of serverside theft.

Drawbacks of Mobile-OTP include:

g) Usability; while Mobile-OTP enjoys the benefit of being
always available to most users most of the time, it does still
require the user to unlock their phone, locate the requisite app
and open it, then hunt through their list of OTP codes for the
one relevant to their account and username, before finding and
typing back in their OTP code.

h) Scalability; finding the right code to use at each login is an N-
squared complexity problem. Each extra login makes it slower
and harder for all other logins across all accounts every time.

i) Compatibility; many OTP apps refuse to run on older devices
“for security reasons”. Ironically, this misguided protection
effort guarantees those users get no protection at all.

j) Mobile authentication; Using Mobile-OTP to access a Mobile
account on the same device requires a competent user who can
quickly switch between apps, and remember random 8 digit
codes. Millions of users, especially elderly, young children,
and others most vulnerable will be unable to do this.

Figure 12. Mobile OTP

12

Figure 13. Mobile-
MFA

Figure 14. Mobile-

Figure 15. SMS OTP

Figure 16. A governments’ advice
to citizens urging to disable SMS-
OTP before travelling abroad.

A-1.4 Modern multifactor mobile Apps with signing
Newer mobile apps are significantly
more advanced than the Mobile-OTP
category, carrying vastly improved
usability, good transaction verification
(TV) and signing, and sensible
protections like password or biometric
key protection, thus can guard against
some of the more obvious attack
scenarios. Since many incorporate
GPS, biometrics, device-ids and more,
they are more accurately described as
multifactor (MFA) than just second-
factor.

Mobile phones travel almost
everywhere with nearly every person
who would want to have 2FA.
They’re a central feature in the lives
many, who take great care to protect
them. They do still get lost or stolen,
but we think it’s fair to say that there
is no single thing that humans put
more collective effort into ensuring
not to lose, than their phones.

With their ubiquity, sensors, power,
and network connections, mobile
phones are ideal authenticators.

Security vulnerabilities include:

a) No MitM, spoofing; or malware protection; An imposter can
cause a legitimate Mobile-MFA user to authenticate the wrong
person (the imposter). There are some apps which use a phone
camera to scan onscreen codes in a partial attempt to prevent
simplistic MitM, but these too fail to prevent authenticating the
attacker (since the attacker is free to simply present the
scanable challenge to the legitimate user.)

b) No channel protection; No Mobile-MFA implements working
mutual authentication – absent a skilled and attentive user, no
protection exists to ensure the users connection to their
webserver is uncompromised.

c) Cloud backup; Modern Mobile-MFA is less susceptible to
insecurities of backup data on cloud servers, since they are
expected to be making use of PINs, biometrics, device-ids, and
protected storage (non-backed-up) features of the modern
mobile OS, however, implementations between vendors vary,
and not all of them take these precautions.

d) Downgrade vulnerabilities; most Mobile MFA supports
insecure fallback methods such as resorting to code-entry
Mobile-OTP for situations where the app has connectivity
issues, subjecting them to the vulnerabilities and drawbacks
discussed in the previous section A-1.3.

Drawbacks of Mobile-MFA include:

e) Usability drawbacks vary widely across Mobile-MFA vendors.
Some apps auto-open using PUSH and auto-communicate
codes and signatures so users don’t need to type things in.
Others require users to manually open apps and find tokens.

f) Banned-Camera policies; Mobile-MFA requiring cameras will
not function in workplaces (e.g. military, secure) prohibiting
them or their use (especially recording screens with phones).

g) In-device switching; Using an app or browser on the same
mobile device as the Mobile-MFA requires user’s adept at
using their mobile OS to switch back and forth between apps.

h) Offline usage; Mobile-MFA requires a working data (wifi or
cellular) connection to function. International travelers and
low-credit mobile users will find this expensive and frustrating.

i) SIM change; Many Mobile-MFA apps cease to function when
SIM cards are changed, purportedly for “security reasons” (we
assume stolen phones or hijacked apps). Since most
international travelers change SIMs when abroad to keep their
roaming costs low, this causes cost and usability problems.

j) Developer mode; again for “security reasons”, many Mobile-
MFA apps refuse to open if the phone is in “development
mode”. People with “rooted” or “jailbroken” their devices are
permanently blocked from using these Mobile-MFA apps.

A-1.5 SMS OTP
Mobile phone text-messages
are the mode widespread
OTP in use, and the least
secure, and the least reliable.

Security vulnerabilities are:

a) Number porting; Many
ways exist to hijack a
user’s phone number and
SMS messages; this is a common and successful attack.

b) SS7 redirection; Cell-network protocols permit unscrupulous
operators anywhere in the world to inject commands rerouting
(thus intercepting) SMS, voice, and cellular data traffic for any
subscriber. Public, with-permission (but without-assistance)
attacks against high-profile victims have been demonstrated.

c) Malicious micro-cells, and radio sniffing; Software-Defined
Radios (SDR) sell for under $10 on eBay, and free opensource
software turns them into local (and remote) SMS sniffers.

d) Weak, or no, encryption; Mobile network encryption is weak,
taking (depending on generation) between 2hrs to less than 1
second to crack on a single PC [5]. Modified cell traffic
attacks which disable encryption entirely are relatively easy to
mount, are commonly found active in cities, and proceed
undetected on all but purpose-designed secure-cell handsets.

e) iMessage sharing; SMS-OTP messages often distribute across
different accountholder devices and show up on multiple user
screens at once. This further subjects SMS to thefts since
intruders with user cloud account access can register their own
devices on this account to receive them.

f) Downgrade situations
Many organizations
recommend users
disable their SMS-
OTP when travelling;
a risky decision for
most users since this
is the time they will
most need 2FA!

g) Low local protection;
many handsets display
messages on lock-
screens, with no
protection against

13

Figure 17. In-Device

biometrics

being observed by malicious 3rd parties.
h) Social-Engineering against 3rd parties; Many customer service

workers in the communications industry can be successfully
convinced by deception or bribery to affect a SIM porting or
other adjustment to deliver SMS-OTP to attackers.

i) Malicious replacement of SMS-OTP number at the website;
Software or operators running the website can be tricked into
changing the phone number to which codes get sent. Attacks
involving combinations of social engineering against multiple
third parties exist which provide an adversary direct access to
change the SMS-OTP phone number themselves online.

j) Mobile Malware; iOS and Android operating systems both
include a “permissions” setting which permits Mobile-Apps to
read and interfere with SMS. Malicious apps exist which
forward SMS to attackers and hide their display to the user.

k) Third party trust; The SMS-OTP itself travels through many
different networks before reaching the user; any breakdown of
trust along the way affords malicious opportunity.

l) Most OTP Hardware vulnerabilities also apply to SMS-OTP;
Including: MitM; no channel security; spoofing; single channel
transport; keyloggers, phishing, malware, social engineering;
no utility for signing transactions; no malware protection
(distinct from mobile malware), low resistance to misuse by
friends, family, or peers; intentional fraud; no non-repudiation;
no mutual auth; (full descriptions in subsection A-1.1)

Drawbacks of SMS OTP include:

m) SIM Change; SMS-OTP stops working when users change
phone numbers. This is common for international travelers.

n) Unreliable delivery; SMS message delivery is often delayed or
fails (a significant problem since OTP codes expire quickly).

o) No offline usage; SMS will never arrive unless a user has a
valid connected and paid-up cellular account.

p) Poor coverage; Many places exist with no cellular coverage.
q) Usability: SMS-OTP dramatically slows all logins; this can be

minutes or more in on poor cellular networks.
r) SMS-OTP does not scale well and suffers poor portability.

Imagine changing your phone number on 1000 accounts.
s) Prevents Fast / Automatic logins; Waiting for and typing-in an

SMS-OTP makes fast and/or automated logins impossible.
t) No secure self-service replacement; Lost phones (or non-

working SMS delivery of any kind) require operator-assisted
bypass. Phones often get lost, so help-desks become used to
allowing users to bypass SMS-OTP. Spotting malicious users
in the flood of legitimate bypasses is difficult.

u) Expensive support and losses; help desks are needed to handle
customer SMS-OTP bypass. Fraud teams and products are
needed to mitigate attacks overcoming SMS-OTP protection.

v) High costs; Sending SMS with reliably delivery costs more.
w) Banned; NIST 800-63B says not to use SMS, and that it will be

banned in future. Many telcos have said this for years.

A-1.6 In-Device biometrics
Broadly speaking, there are
two types of biometrics:-

(1) In-Device, which
typically make use of secure
hardware within a device to
record and later compare user
biometric features, but never
send biometric features or
scans over networks, and
 (2) Remote biometrics,
where the user biometric (e.g.
their voice) is sent to a
remote machine for processing. In-Device are considered
“secure”, since considerable effort is typically applied by the
manufacturer to prevent theft and feature extraction. Remote
biometrics are considered extremely dangerous, since raw
biometrics data is subject to theft both in transit and at rest.
Because biometrics can never be changed once compromised,
many jurisdictions and countries completely ban the transmission
and/or storage of biometric data through networks for all or part
(e.g. just children) of their population.

Security vulnerabilities of In-Device biometrics include:-

a) Not all phone manufacturers implement biometrics
technologies well. Some create purpose-built secure enclaves
for biometric processing & offer well designed API interfaces,
others do none of that. One popular platform SDK includes a
key-enumeration API; any app can extract every fingerprint
key from the phone. It also has no biometric cryptography API
at all; developers have no option but to write insecure code.

b) All biometrics reduce overall user security, because they all
offer PIN or password bypass for situations where user
biometrics fail (e.g. fingerprints after swimming or rough
manual labor). An adversary now has 2 different ways to
compromise protection; steal a fingerprint or guess a password.

Figure 18. Why adding extra security makes things weaker.

Some argue that passwords become stronger since they’re used
less, and thus harder to observe, however, adversaries with that
level of access can engineer password-theft scenarios (e.g. fail
a fingerprint several times to force the user to enter their code)

c) False vendor claims; The world’s strongest and most advanced
(for those who recall vendor advertising at the time) fingerprint
biometrics with subdermal imaging and secure enclave was
hacked less than 48 hours after release using a laser printer and

14

Figure 19. USB OTP

Figure 20. X.509 PKI diagram

wood glue. Marketing messages were posthumously amended,
the vendor claiming they meant “more secure because more
people will use it instead of leave their phones unlocked”
(which is true), despite the fact it reduced security for their
customers already using passcodes, who opted in.
Most biometrics use extracted features and approximation to
calculate probabilities of match, making them unsuitable for
hashing-technique protection, yet many vendors make clearly
untrue “completely safe against theft” claims on these grounds.

d) Low entropy (depending on the type of biometric and sensors);
biometric efficacy is a tradeoff between false negatives and
positives; mimicry can defeat voiceprints 33% of the time[8].

e) Easily stolen keys; A fingerprint protected mobile phone will
spend almost all its life covered in legitimate user fingerprints.

f) Easily copied; Custom silicone finger-caps (e.g. to defeat shift-
work timeclocks) made to copy any prints you supply cost $20.

g) Unchangeable keys; there is no recovery after theft.
h) Widely collected keys; Travelers, criminals, and voters

routinely provide fingerprints. Many of these collections are
shared or have been hacked and stolen (or will be in future).

i) Vulnerable to failures in unrelated systems; Biometrics stolen
online may be useable to defeat those used in-device.

Drawbacks of In-Device biometrics include:-

j) False negatives; biometrics often don’t work. (refer Figure 18).
k) Environmental reliance; some biometrics rely on the conditions

of collection. Face-recognition often fails at night time.
l) Backups; In-Device biometrics are not useful for protecting

remote resources (e.g. cloud storage).
m) Portability. Complete re-enrollment is needed on new devices.

A-1.7 Biometrics collected remotely
These are the worst and most reckless form of security: refer
explanation at A-1.6(2). They are already widely banned.

Security vulnerabilities of remote biometrics include:-

a) In-Device biometric vulnerabilities also apply to these.
b) Trivially vulnerable to theft during use, outside of use, from

public archives and directly from stored feature databases.
c) Often transmitted in-the-clear; (e.g. most voice remote-

biometrics take place over unsecured telephone networks)

Drawbacks of remote biometrics include:-

d) Illegal to use in many places and on certain people (e.g. kids).
e) Easy to steal. No way to change once stolen.
f) Dictionary attackable; not all remote-biometrics have rate-

limits on guessing, and combined with the low entropy of
many remote-biometrics, brute-force access is feasible.

g) Imprecise; most remote-biometrics must suffer the
inadequacies of the “weakest acceptable collection device”
(e.g. poor voice connections for voice).

h) Enormous negative privacy implications; biometrics facilitate
automated non-consensual surveillance and tracking of subjects
in a wide and increasing range of circumstances.

A-1.8 USB Gadgets and Smartcards
These screenless devices which attach
to your computer (e.g. pluggable USB
keys), or attach to a reader which is
itself attached to your computer (e.g.
keyboard with card-reader).

Security vulnerabilities of connectable gadgets include:

a) Malware; all connectable gadgets are at full mercy of whatever
infections might be present on their host machine.

b) MitM; USB OTP has 2 options: (1) defend MitM attacks (e.g.
certificate-substitution), making them unusable in workplaces
with DPI firewalls, or (2) accept intermediaries (and attackers).

c) Injected transactions; with no on-device screen, the signing
user has no means to verify what they’re signing.

d) Piggyback risks; USB memory sticks can be disguised as USB
tokens, facilitating unauthorized carriage and use at work.

e) Infection vector; USB-OTP tokens are computing devices;
programmable to infect host computers. USB attacks like
hardware keyloggers, PC wifi bugs, and DMA-memory-theft
bootloaders can also be disguised to look like USB-OTP.

f) Increased social-engineering risks; plausible bypass excuses
exist (e.g. tokens left at home, not carried on vacation, etc)
making it hard for help-to desks recognize intruders.

Drawbacks of connectable gadgets include:

g) Limited compatibility; there are many different kinds of plugs
used across phones and PCs, like USB-A, USB-B, Micro-USB,
Mini-USB, USB-C, iPhone 30pin, lightening and whatever-
comes-next. No USB-OTP supports all these. Users with
multiple devices, or who change devices, or don’t have slots on
their device may find their USB-OTP will no longer connect.

h) Workplace bans; security conscious organizations do not allow
the use or connection of USB devices.

i) Storage security; Workplaces that do allow USB often prohibit
the transport of USB devices into or out of the workplace,
forcing employees to leave them unattended after hours.

j) Difficult to scale; different devices, vendors, and standards are
incompatible. Multiple different USB-OTP’s will be needed to
protect many accounts, each one suitable for only a small
subset, leaving it for the user to remember which-is-for-what.

k) Single-device only; USB-OTP works only with one device at a
time usually; there is no way to have a spare for emergencies.

l) Inconvenience; carrying devices everywhere so you can login
when you need also raises the risk of USB-OTP loss or theft.

A-1.9 Client TLS certificates
Most browsers natively
support X.509 client
certificates. So does other
software, and custom
applications exist also
making use of similar Public
Key Infrastructure (PKI).

Vulnerabilities include:-

a) Certificate compromise;
client certificates are stealable computer files. They have
passwords, but can be brute-force and dictionary-attacked

15

Figure 21. Single-use TAN

attacked offline, or passwords stolen.
b) Malware; PKI offers no protection against malware.
c) CA Compromise; Certificate Authorities issuing client

certificates can and have be compromised.
d) Checking certificate legitimacy is difficult, (impossible on

some devices). Users rarely verify certificates or legitimacy.

Drawbacks of PKI include:

e) Usability; PKI is one of the least useable 2FA methods. It
requires highly competent users. Enrollment, use, and renewal
are challenging. Implementation is radically different across
devices and vendors, and frequently changes with upgrades.

f) Compatibility; There are many PKI compatibility differences,
file types, encoding formats, ciphers and digests. Only a
fraction those work in any particular O/S and software.

g) Expiry; certificate lifetime is usually short, (typically one year,
or much less for trial certificates). Users must re-endure the
challenging reissuance process often. Old certificates must
still be kept for future signature checking, and these make
ongoing usage even worse (user need to select their current
login certificate, named identically to all their expired ones).

h) Cost; Most client PKI requires payment, often high, to a
Certificate Authority (CA), usually annually.

i) CA Revocation; this invalidates all user certificates at once.
j) Portability; Certificate re-use is possible across many devices,

but the steps needed to make this work are extremely complex.

A-1.10 Paper lists (TAN)
Transactional Access
Numbers (TAN) are
codes typically printed in
a grid requiring users to
locate via some index
number or a row and
column id the OTP code
to use. Some are single-
use only.

Security vulnerabilities of TAN include:

a) TAN’s suffer the same vulnerabilities as OTP hardware listed
in section A-1.1(a) through (m).

b) TAN Pharming is an attack technique which tricks users into
revealing TAN codes to an attacker, who is then free to use
them in subsequent attacks. They are facilitated by the
predictability of the TAN index (e.g. a TAN card with rows
and columns will always have a TAN code at location A1).

c) A server needing to verify TAN correctness necessarily holds
sufficient information to do this, which is then susceptible to
theft (and offline dictionary attack if necessary); one server-
side break-in can invalidate all issued TANs at once.

Drawbacks of TAN include:

d) Do not scale; If activated on thousands of accounts, a user
would need thousands of individual TAN lists or cards.

e) Physical replacement issues; If used regularly, expiring TANs
would require frequent replacement, and reusable TANs would
become reconstructable to eavesdroppers.

A-1.11 Scope failures across all 2FA (and non-2FA)
Within every category, many vendors & products exist, each with
their own and differing shortcomings (not covered in this paper).
The broadest shortcoming across all 2FA categories (and indeed,
most non-2FA alternatives as well) is “scope”. Most vendors push
responsibility for “difficult” security problems to their customers.

A-1.11.1 Reliable initial user identification
The intersection between identity and authentication is hard to
secure; so much so that all 2FA technologies chose not to address
this problem. This leaves a gap between the identification of the
new user, and their enrollment in 2FA. All 2FA categories leave
opportunity for intermediaries to hijack or subvert the deployment
process. Many providers mix deployment with verification such
as by physically shipping devices, keys, unlock codes, and TANs
in postal mail, or by using SMS, phone, or email to deliver PINs
or enrollment keys. All those shipping measures are unreliable,
offering interception, substitution, and facilitating a range of
social-engineering opportunities against both users and staff alike.
They also require soliciting personal address information from
users. Google, during the 2011 AISA National Conference,
revealed the single biggest issue preventing uptake of their SMS-
OTP product was user reluctance to provide their phone number.

A-1.11.2 Enrolment across compromised channels
2FA is deployed because risk is identified among users, so it’s
clearly an oversight to ignore this risk during the 2FA enrollment.

Assuming a user took delivery of their 2FA solution without
incident, none offers satisfactory protection to prevent the attacker
(1) either stealing the 2FA for themselves, (2) tricking the 2FA
into enrolling the attacker instead of the user, or (3) downgrading
the protection or preventing and/or spoofing enrollment entirely.

A-1.11.3 Loss handling
All 2FA is subject to loss or destruction, or dependent on secrets
that users might forget, particularly the elderly, & especially when
2FA is used infrequently. Some 2FA is version dependent, and
fails when updates take place (for example; Java) or machines
change (e.g. pluggable USB devices when users switch to an
iPad), or after certain intervals of time or when batteries go flat.

2FA bypass is an often-exploited shortcoming across all 2FA
categories. It is the fault of the 2FA leaving loss-handling outside
the scope of protection which caused this problem. Each
deployment requires its own re-enrolment procedure, and most
make use of fallback/recovery mechanisms that do not use 2FA.

A-1.11.4 Social engineering of staff
For all users who cannot log in with their 2FA for any reason (e.g.
section A-1.11.3), some method of bypass is introduced. Support
staff with access to change or remove 2FA is one common
method. Since these staff are so accustomed to dealing with
average legitimate users and everyday problems, it becomes very
difficult for them to detect an account takeover attack being
performed by a social engineer. Many headline news stories of
high-profile 2FA-bypass account takeovers and online banking
thefts facilitated through 2FA-bypass have been published.

16

	ABSTRACT
	1. INTRODUCTION
	2. Problems/Issues with current 2FA tech
	2.1 Problems and Issues with non-2FA tech
	2.1.1 TLS Encryption.
	2.1.2 HSTS and HPKP.
	2.1.3 Password protection widgets (moving on-screen keyboards)
	2.1.4 Knowledge-Based authentication (KBA).
	2.1.5 Site Authentication Images.

	2.2 Problems caused by poor authentication.
	2.2.1 CAPTCHA
	2.2.2 Know Your Customer (KYC) artifacts
	2.2.3 Excessive attribute release
	2.2.1 Unauthorized access and destruction

	3. BACKGROUND
	4. SOLUTION DESIGN AND CONSTRUCTION
	4.1 Mobile App design and construction
	4.2 Appliance
	4.3 TAN Cards
	4.4 Optional Anti-MitM Agent
	4.5 Protocol
	4.5.1 Authentication
	4.5.2 Transaction Verification (inline)
	4.5.3 Transaction Verification (out of band)

	5. RESULTS AND RECEPTION
	5.1 Protection efficacy and user experience.

	6. DISCUSSION
	6.1 Importance of usability
	6.2 Applicability to Identity services

	7. CONCLUSION
	7.1 Future work

	8. ACKNOWLEDGMENTS
	9. REFERENCES
	APPENDIX
	A. Problems/Issues with current 2FA tech
	A-1 Categories and vulnerabilities of 2FA
	A-1.1 OTP hardware.
	A-1.2 OTP with transaction-signing (OTP+TV)
	A-1.3 Mobile App OTP
	A-1.4 Modern multifactor mobile Apps with signing
	A-1.5 SMS OTP
	A-1.6 In-Device biometrics
	A-1.7 Biometrics collected remotely
	A-1.8 USB Gadgets and Smartcards
	A-1.9 Client TLS certificates
	A-1.10 Paper lists (TAN)
	A-1.11 Scope failures across all 2FA (and non-2FA)
	A-1.11.1 Reliable initial user identification
	A-1.11.2 Enrolment across compromised channels
	A-1.11.3 Loss handling
	A-1.11.4 Social engineering of staff

